The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 X 1 X 1 1 1 X 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 X X 1 1 1 X 1 X 0 3 0 0 0 0 0 0 0 0 3 6 6 3 3 3 0 6 3 6 3 0 3 0 6 3 0 6 3 6 6 6 3 3 3 0 6 6 0 3 0 0 3 6 6 3 6 6 3 0 0 6 6 0 3 6 0 3 3 6 0 3 3 0 6 6 6 6 0 3 0 0 3 6 0 6 3 3 6 3 0 6 6 3 0 6 3 0 0 3 0 0 0 0 3 6 6 6 0 0 6 3 6 3 0 3 3 0 6 6 0 3 3 6 0 3 0 6 6 6 3 6 0 6 6 3 6 6 0 3 0 6 6 0 3 0 3 3 0 0 0 3 6 3 6 6 6 0 6 0 3 0 6 0 3 0 6 0 6 6 6 6 6 0 6 3 6 6 0 3 0 6 6 3 0 0 0 3 0 0 3 6 0 6 0 0 6 3 3 6 0 3 0 6 0 6 6 0 6 0 3 6 6 3 3 3 6 0 0 6 6 3 6 6 3 3 6 0 6 3 6 0 6 0 6 3 6 0 6 6 3 3 6 6 3 6 3 3 0 3 3 0 6 3 0 3 0 0 0 6 0 0 0 3 6 3 3 6 6 0 0 0 0 0 0 3 0 6 6 3 0 6 6 6 0 6 6 0 6 3 0 6 6 0 3 6 0 6 3 0 3 0 3 0 6 0 6 0 6 3 3 0 6 6 3 6 6 0 3 0 6 6 3 6 0 0 3 6 3 6 0 0 6 6 3 6 6 0 0 3 6 6 0 3 6 6 3 0 0 3 0 3 0 0 6 0 6 6 0 0 0 0 0 3 6 6 6 6 6 6 3 6 3 3 6 3 6 6 6 6 0 6 0 3 0 0 6 3 6 0 6 3 0 3 3 0 3 3 0 3 6 0 6 3 3 3 3 0 3 6 0 6 3 6 6 3 3 6 3 0 6 3 3 3 3 3 6 6 6 6 0 3 6 3 3 3 6 0 6 0 6 3 6 6 0 generates a code of length 87 over Z9[X]/(X^2+6,3X) who´s minimum homogenous weight is 162. Homogenous weight enumerator: w(x)=1x^0+120x^162+150x^165+266x^168+350x^171+4854x^174+458x^177+180x^180+60x^183+24x^186+16x^189+14x^192+18x^195+20x^198+14x^201+6x^204+2x^207+2x^210+2x^213+2x^216+2x^234 The gray image is a code over GF(3) with n=783, k=8 and d=486. This code was found by Heurico 1.16 in 4.28 seconds.